
A CS Unplugged Design Pattern

Tomohiro Nishida
Osaka Gakuin University,

Japan
nishida@ogu.ac.jp

Susumu Kanemune
Hitotsubashi University, Japan

kanemune@acm.org

Yukio Idosaka
Iinan Junior High School,

Japan
idosaka@gmail.com

Mitaro Namiki
Tokyo University of Agriculture

and Technology, Japan
namiki@cc.tuat.ac.jp

Tim Bell
University of Canterbury,

New Zealand
tim.bell@canterbury.ac.nz

Yasushi Kuno
University of Tsukuba, Japan

kuno@gssm.otsuka.
tsukuba.ac.jp

ABSTRACT
“Computer Science (CS) Unplugged”is an educational method
for introducing non-specialists to concepts of CS through
hands-on activities that don’t require the use of a computer.
Often the deeper concepts of CS have been considered as be-
ing too difficult for elementary and middle school students,
and many educators teaching “IT” are not even aware of
the richness of the topic. CS Unplugged methods have been
used successfully with students of a wide range of ages. In
this paper, we analyze the structure of CS Unplugged ac-
tivities to identify the elements that make them work well.
Based on the analysis, we propose a design pattern which
will be useful as a guideline for developing new activities,
and to revise existing ones. We also describe our experience
developing original teaching material, using the pattern as
a benchmark for evaluation.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Design

Keywords
Kinaesthetic learning, pedagogical design patterns

1. INTRODUCTION
In the USA there has been a rapid decline in interest from

college students enrolling in Computer Science (CS); this has
been reflected in many other countries, or if numbers have
not decreased then in some cases the quality of the students
has. This decrease in interest can largely be attributed to a
gap between the perception of what incoming students think

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

that CS is, and what graduates find [1]. Many approaches
have been proposed to address this issue, and one that has
met with some success is the CS Unplugged [2, 3] program.

A significant number of the activities have been translated
into at least 12 languages [4, 5], and they are being used in
even more countries. For example, in Japan a number of
teachers and researchers have reported positive responses
from students to this approach [6, 7, 8, 9]. Many of the ac-
tivities have been recommended in the ACM K-12 curricu-
lum [10]. Given this widespread uptake, it will be worth-
while to identify the essence of this approach to encourage
the design of new activities, and to identify improvements
to existing ones. This is the main purpose of this paper.

In CS Unplugged, students from elementary school ages
upwards work without computers with hands-on activities
that help them to understand a broad range of CS topics in
an engaging and motivating way. Unplugged activities have
been published in a number of formats, including a book of
20 activities [3], and a more teacher-oriented book of 12 ac-
tivities. The latter book has been translated and published
in Korean [4] and Japanese [5]. The reader is referred to
the online resources for more details, but as an example,
young students can be introduced to Finite State Automata
with a simple but engaging activity that involves running
between “islands” (people stationed around the playground)
discovering paths in a map (transitions in the FSA).

As CS Unplugged activities have been quite successful so
far, we wanted to develop more such activities. However,
we wanted to retain the favorable properties of the original
activities in new ones. For this purpose, we needed some
“design guidelines,” which lead to applying the idea of de-
sign patterns. Design patterns in CS are general reusable
solutions to a commonly occurring problem in software de-
sign [11]. Pedagogical design patterns are the equivalent for
the design of a course or lesson. Many patterns have been
identified (e.g. Bergin’s 14 patterns [12]), but none corre-
spond directly to the approach taken in the CS Unplugged
activities. Begel’s “Kinesthetic Learning Algorithm” [13]
web site provides a template for activities that is called a
design pattern, but it doesn’t give detailed guidance on how
to come up with a new pattern.

In this paper we analyze the fundamental structure and
design of the published Unplugged activities with the in-
tention of crystallizing the aspects that make the activi-
ties engaging. We then propose a “CS Unplugged Pattern,”
which provides design principles and guidelines for such ed-

231

ucational materials. We hope that new activities can be
designed and evaluated using this pattern, so that teachers
can develop their own teaching materials. The pattern also
highlights weaknesses in some of the published activities,
which has led enhancements that we describe and evaluate
in Section 3.

2. ANALYSIS OF “CS UNPLUGGED”
In this section we identify the distinctive features of CS

Unplugged activities, and propose a pedagogical design pat-
tern that captures these.

2.1 Distinctive features of CS Unplugged
The ACM K-12 curriculum [10] has a strong emphasis on

the intellectual and problem-solving nature of CS, which we
agree with. The Unplugged approach is particularly aimed
at jumping to the heart of CS, avoiding barriers such as
having to learn a programming language, being interested
in computers, or even having access to them. Unplugged is
primarily focused on outreach rather than teaching, exposing
students to ideas to remove misconceptions about the field.
The main characteristics of the Unplugged activities are:

No computers: By definition, computers are not used di-
rectly in the activities. This immediately removes pro-
gramming ability or even owning a computer as a pre-
requisite for doing CS. Of course, inevitably computers
are used to develop and publish the materials.

Games: The activities are generally based around a game
or challenge, so that children see them as play, which
leads to interest, curiosity and motivation.

For example, in the “Card Flip Magic” activity, the
surprise of the magic trick attracts the interest of the
students, and their desire to find out the trick pro-
vides motivation to understand what is happening. In
the “Battleship” activity, a game with an opponent at-
tracts the students’ interest, and their desire to win the
game provides their motivation to seek a strategy (or
algorithm) appropriate for that game. In the“Treasure
Hunt” activity, the motif of a treasure island attracts
the students’ interest, and letting the students draw
their own trails naturally leads to understanding the
idea of finite state automata.

Kinaesthetic: Physical objects are used, such as cards and
weights. This provides kinaesthetic engagement, and
often introduces humor if the objects are out of context
(such as fruit being used in a computing class).

Student directed: The activities generally involve inter-
action with other students, and encourage students
to discover answers by trial and error. This engages
them with the problems, and demonstrates that they
can discover great ideas for themselves. Working with
other students encourages teamwork and communica-
tion, also important traits of a CS graduate.

Easy implementation: The activities are easy to prepare
and use only inexpensive equipment, much of which
can be found in a school. Where handouts are needed,
material is provided so that teacher can simply copy it
and not have to prepare resources.

Growing body of ideas: Sharing ideas and variations of
activities is an important aspect of the project, and
many clever variations of activities have developed as
educators around the world have used them and adapted
them to local conditions.

Sense of story: Often elements of fantasy and story telling
are used to engage students (e.g. pirates, secret mes-
sages). This can draw younger students into the activ-
ity, and emphasises the value of creativity rather than
dry learning.

It is customary to use computer rooms for computing and
informatics classes. Because CS Unplugged activities do not
use computers, so they can be carried out in ordinary class-
rooms or even in outdoors. In fact, trying to run them in
a computer room can be difficult, as students expect to be
using a computer for CS, and can see the activities as just
a pre-amble to getting onto the computers, reducing their
concentration on the activities.

2.2 A “CS Unplugged Pattern”
Design patterns are collections of good design rules and

essences, and originate from the architectural patterns (for
towns and buildings) by C. Alexander [14] in the late 1970’s.
In the domain of CS, the “Gang of Four patterns [11]” and
“analysis patterns [15]” are well-known.

Since this early work there has been much work around
patterns, with collections being created for various aspects
of software development, and various books and conferences
such as PLoP (Pattern Languages of Programming) [16] are
available. We have chosen J. Coplien’s pattern template [17]
as the basis of our pattern description. The goal is to make
it easy to develop appropriate teaching materials. Our CS
Unplugged Pattern is shown in Figure 1, and a commentary
is provided below.

Pattern Name
Assign an appropriate name. We want to preserve the
reference to the model of the CS Unplugged materi-
als, so the pattern have been named “CS Unplugged
Pattern.”

Problem
Explanation of the problem that must be solved. The
main issue is the lack of understanding in many schools
of what CS is.

Context
The context or situation in which the solution is ap-
plicable. An important age for children making career
decisions is around 12 years old, when they are making
decisions about what specializations they will develop
through their high school years after leaving a general-
ist elementary school education. CS Unplugged covers
a wide range of ages, but is particularly targeted for
the children in their late elementary years (ages 9–12),
and should also be applicable to junior high school stu-
dents (ages 12–15) at least.

Forces
The conditions in which this pattern is applicable. A
fundamental principle is that the material can be taught
without computers. However, we also want to ensure
that the activities are useful for school classes, which is

232

Table 1: Example mappings from everyday objects
to CS concepts

Objects Mappings
Cards Two states (two sides), choice (drawing

from a shuffled deck), combinations and
permutations (shuffling, spreading out)

Cups,
containers,
buckets

Hidden information (on top of another
object), two states (normal, inverted),
variable (contains another object), lim-
ited contents

Stickers,
marker pen

Commitment (can’t backtrack if perma-
nent), backtracking (if not permanent),
label (on another object), range of values
(colour, characters), user input (writing
text or a number, marking a choice)

Chalk on
pavement,
tape on floor

Transitions, edges, links, nodes, vertices,
paths, target (at the end of paths)

Board game Paths (following layout on the board),
chance (rolling dice, choosing cards),
rules (limited number of operations)

Food Competition (to win a candy/chocolate),
humor (using food out of context), color
(of fruit, candies), sharing (dividing
a cake or chocolate), size (comparing
items)

String Connection, communication (pull on the
string, slide a message along), edge
weights (length of string), network

why the forces include making the material accessible
to non-specialist teachers, and able to be completed
within the framework of a school day. This length pre-
scribed also relates to the concentration span of school
children, and also enables the activities to be used in
other situations, such as an out-of-school club.

Solution
The strategy to solve the problem. This is the key com-
ponent for constructing new activities. Here we pro-
vide a series of steps for constructing an exercise. Of
course, like any creative activity, there is no simple for-
mula, iteration over these steps will be required, and
some activities can be designed simply based on exist-
ing puzzles and games that happen to map to CS con-
cepts (such as the well-known“knitting needle” sorting
and searching [18]).

1. Choose a concept from CS to be communicated.

2. Identify the key elements of the concept, such as
bits (in data representation), states and transi-
tions (in finite state machines), edges and vertices
(in graphs), comparison (in sorting and search-
ing), pixels (in graphics), psychological phenom-
ena (in HCI), or relationships (in graphs and other
data structures).

3. Consider what games, puzzles, toys, or common
objects use similar elements. Table 1 gives some
example mappings of CS concepts to physical items.

A visit to places like stationery stores, bargain

basements, playgrounds, educational suppliers and
toy stores can be useful for getting ideas.

4. Turn it into a challenge. An important goal is for
students to discover ideas for themselves, not to
teach them a particular algorithm or technique for
its own sake. Thus the activity needs to contain
a challenge that will engage the students, such
as trying to find a lower cost solution, or com-
plete the challenge before another group. Con-
sider using a team activity where students can en-
gage in different roles, and a successful outcome
means success for the team. This will prompt
spontaneous communication among students and
encourages them to exchange ideas, which leads
to deeper thinking and more insight. Making a
challenge can also involve deliberately including
an impediment, such as one participant not be-
ing able to see all the information (e.g. in the
battleship game), or restricting the way in which
objects can be manipulated (e.g. in the sorting
algorithms where only two weights can be com-
pared at a time) — “I hear and I forget, I see and
I remember, I do and I understand.”

5. Evaluate. There is no substitute for testing activ-
ities with a variety of students. Sometimes this
exposes flaws, and sometimes the students come
up with improvements or simplifications that im-
prove the activity. The evaluation must consider
the simplicity, engagement level, cost and nov-
elty of the activity. It is also useful to have other
teachers use it, and have other experts in that do-
main look at it to see if there is some element of
the domain that could be added to improve the
activity.

6. Refine. This follows from the evaluation.

7. Publish. The material should be published as
a ready-to-use handout including information on
how to obtain resources, and the applications of
the concept being demonstrated. Preparing re-
sources to explain the actual use (of the principle)
in computers is important because students can
link their experiences to technologies in the real
world. Because teachers may be non-specialists,
they many not have the background to give ex-
amples themselves from real-world applications,
so accompanying resources should enable them to
understand this and present it to the students.

Resulting Context.
The obvious goal is to increase the breadth and quality
of activities available so that educators can choose one
that is appropriate to the topic at hand, or helps them
to illustrate a concept that they wish to demonstrate
so that students better understand what CS is.

Rationale.
An explanation of the value of the CS Unplugged Pat-
tern has already been given in Section 1.

The CS Unplugged pattern is intended to be an easy and
effective tool for developing original teaching materials that
fulfill the concepts and merits of CS Unplugged. Moreover,

233

existing CS Unplugged materials can be reviewed and veri-
fied using the pattern so that weak points can be discovered
and their quality can be enhanced. Additionally, materials
developed independently from CS Unplugged can be checked
against the pattern to discriminate those that have desirable
characteristics.

In the following section, we introduce some original activ-
ities developed as an extension of those in the CS Unplugged
textbooks, and we evaluate the material using CS Unplugged
Pattern.

¨ ¥

§ ¦

Pattern Name: CS Unplugged Pattern
Problem:

• It is difficult to communicate deep CS principles
to students who have no background in program-
ming or access to computers.

Context:

• Students without specific CS knowledge (main
from ages from 7 to 15 and up) should be able
to understand and appreciate the material

Forces:

• Needs to be taught without computers.

• Teachers who are not professional CS researchers
can teach the material.

• The material can be taught in one lesson (typi-
cally 20 to 40 minutes).

Solution:

• Choose a concept from CS to be communicated.

• Identify the key elements.

• Consider what games, puzzles, toys or common
objects use similar elements.

• Turn it into a challenge.

• Evaluate the activity with students.

• Refine the activity based on the evaluation.

• Publish the activity, with information on obtain-
ing resources, and with an explanation of the rel-
evance of the concepts being demonstrated.

Resulting Context:

• Students understand the concept from CS.

• More concepts from CS are covered.

Rationale:

• Group-work and games enhance students’ moti-
vation and engage them to think about CS prin-
ciples.

• Teaching resources are specifically targeted to
teach the essence of CS principles even if the
teacher is not familiar with the concept.

Figure 1: CS Unplugged Pattern

3. DEVELOPMENT AND EVALUATION OF
NEW MATERIAL

There is a need to expand the coverage of the Unplugged
activities so that a wider range of topics is available, and so
that existing topics can be explained in more detail.

For example, in the “Card Flip Magic” activity, students
can understand that a parity check can detect and correct
errors, but the need for this may not be immediately ap-
parent. This is problematic for younger students, for whom
the activity is the main experience, and explanations may
not have such a great impact. It is also useful to provide a
richer experience for high school students to help them un-
derstand real-world applications of the CS principles they
have learned in the activities.

Therefore, we have developed the “Telephone Game” to
enhance students’ understanding of why error detection and
correction is required, and have evaluated it at Osaka Gakuin
high school. This activity was developed concurrently with
CS Unplugged Pattern, so many of its characteristics natu-
rally follow the pattern.

Figure 2: A student playing the “Telephone Game”

The “Telephone Game” is carried out as follows:

1. Students are organized in groups, and the first student
in the group receives the worksheet (Figure 3). In the
worksheet, a picture of an 11 by 9 bitmap is encoded
in a 0/1 sequence.

2. The student should transfer the 0/1 sequence to the
next student. They are instructed to speak each digit
only once, with no correction.

3. Each student receives the 0/1 sequence and transfers
it to the next student. However, when they are using
parity check (as in the “Card Flip Magic,”) they are
allowed to correct the faulty bit.

4. The last student in each group reconstructs the bitmap
picture.

An evaluation was performed by participating in a joint
university-high school project, teaching programming classes
to third (the highest) grade students (aged around 17-18),
from April 2007 to December 2007. 10 students attended
the class, which worked through four Unplugged activities,
plus the “telephone game”.

We organized the 10 students into 3 teams (Team A: 3,
Team B: 3, Team C: 4), and conducted the game first with-
out parity and then with parity. The direction of transfer
was reversed between the games.

As shown in Table 2, with parity two groups could transfer
the image without error, and the remaining team also had
only 1 error. Even if we consider the learning effect, the
usefulness of parity was clear to all present. In a survey of
the class, 6 students reported understanding the role and
usefulness of a parity check, 3 understood “somewhat”, and
one reported only partial understanding.

234

(a) without parity

(b) with parity

Figure 3: The data used in “Telephone Game”

Table 2: the result of “Telephone Game”

Team 1st (without parity) 2nd (with parity)
A Fail(19 errors) Fail (1 error)
B Fail(6 errors) Success
C Fail(2 errors) Success

Another extension activity,“Creating and recovering maps”
was developed to extend the “Treasure Island” (Finite state
automata) activity. In this, they created their own FSA and
wrote programs to accept those. After that they checked
each other’s programs and recovered maps in pairs.

At the end of the semester, the students were asked to
identify the activities the students that they thought were
interesting. The “Telephone Game” was chosen by the most
(7 students out of 9), with “Battleships” and “Creating and
Recovering Maps” being second (6 students each). This in-
dicates that the activities that build on others and explain
their application are the more engaging for high school stu-
dents.

We have checked those activities against CS Unplugged
Pattern, and verified that the activities conforms to most
of the properties (actually the teacher was a professional
CS researcher, but the high school teacher attended to the
class confirmed that he will be able to use the activities
satisfactorily).

In contrast, a programming activity (“Look-up Program”)
based on the battleships searching game was not mentioned
by the students. When verified against CS Unplugged Pat-
tern, the activity does not conform to the pattern in that:
(1) it uses computers, (2) it requires some CS background,
(3) it is not a game or a challenge.

This result suggests the usefulness of the CS Unplugged
Pattern, but also raises the question of how Unplugged ac-
tivities might better be linked to online activities.

4. CONCLUSION
In this paper, we have analysed“CS Unplugged”materials

in which students can learn principles of CS without comput-
ers. From the analysis, we have proposed a “CS Unplugged
Pattern” as a guideline for developing teaching resources,
and a methodology for identifying components that might
be used to construct a kinesthetic activity.

Although CS Unplugged materials relate to abstract con-

cepts of CS, the use of demonstrations and game experiences
allow the students to learn and understand those concepts in
an entertaining way and with high motivation. With the CS
Unplugged Pattern, we can expect to develop more teaching
resources with these desirable characteristics.

5. REFERENCES
[1] Rick Rashid: Inspiring a New Generation of Computer

Scientists, Communications of the ACM, Vol.51, No.7,
pp.33–34, 2008.

[2] Tim Bell, Ian H. Witten, Mike Fellows: Computer
Science Unplugged – An enrichment and extension
programme for primary-aged children, 2005.
http://csunplugged.com/

[3] Tim Bell, Ian H. Witten, Mike Fellows: Computer
Science Unplugged: off-line activities and games for all
ages, 1999.

[4] Lee WonGyu (translation): Computer Science
Unplugged (Korean Version), Hongreung Science
Publishing, 2006.

[5] Susumu Kanemune et al. (translation): Computer
Science Unplugged (Japanese Version), Etext, 2007.

[6] Tomohiro Nishida et al.: New Methodology of
Information Education with “Computer Science
Unplugged”, ISSEP 2008 Proceedings, LNCS 5090,
Springer, pp.241–252, 2008.

[7] Yukio Idosaka et al.: A Practical Approach for
Elementary Schoolchildren with “Computer Science
Unplugged” , Proceedings of SSS2008, pp.25–32, 2008.
(In Japanese)

[8] Yayoi Hofuku et al.: Using CS Unplugged in High
School Information-B Classes, Proceedings of SSS2008,
pp.201–206, 2008. (In Japanese)

[9] Hiroki Manabe et al.: Information Education in a
Vocational Training School for Persons with
Disabilities, Proceedings of SSS2008, pp.171–178, 2008.
(In Japanese)

[10] ACM K-12 Task Force Curriculum Committee: ACM
K-12 CS Model Curriculum, 2nd Edition, 2003.
http://csta.acm.org/Curriculum/sub/ACMK12CSModel.html

[11] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides: Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[12] Joseph Bergin: Fourteen Pedagogical Patterns.
http://csis.pace.edu/~bergin/PedPat1.3.html

[13] Andrew Begel, Daniel D. Garcia and Steven A.
Wolfman: Kinesthetic learning in the classroom,
SIGCSE Bull., 36(1), 183–184, 2004.

[14] Christopher Alexander, Sara Ishikawa, and Murray
Silverstein: A Pattern Language: Towns, Buildings,
Construction, Oxford University Press, 1977.

[15] Martin Fowler: Analysis Patterns: Reusable Object
Models, Addison-Wesley, 1996.

[16] Pattern Languages of Programs.
http://hillside.net/conferences/plop.htm

[17] James Coplien: Software Patterns, 1996.
http://sites.google.com/a/gertrudandcope.com/

info/Publications/Patterns/WhitePaper

[18] Paul Curzon: Computing Without Computers.
http://www.dcs.qmul.ac.uk/~pc/research/

education/puzzles/reading/

235

